请推导一个圆周率兀的计算公式,谢啦!(php 求角度函数)很多朋友对这方面很关心,我爱编程网整理了相关文章,供大家参考,一起来看一下吧!
本文目录一览:

请推导一个圆周率兀的计算公式,谢啦!
第一类算法:arctan 的级数展开
PI/4 = 4 arctan(1/5) - arctan(1/239) (1)
arctan(x) = x - x3/3 + x5/5 - x7/7 + .... (2)
很容易想到,要得到超高精度的 PI 值,实数在计算机中必须以数组的形式进行存取,数组的大小跟所需的有效位数成正比。在这个算法中,PI 的有效位数 n 随 (2) 的求和项数线性增加。而为计算 (2) 中的每一项,需要进行超高精度实数除以小整数(52, 2392, 2k+1)的循环,循环所需次数也跟 n 成正比。所以,这个算法总的时间复杂度为 O(n2)。
这个算法的优点是简单,而且只需要进行整数运算。下面给出我写的算 PI 程序。在程序中,我采用了一些提高速度的措施:超高精度实数以数组的形式进行存取,数组元素的类型为 64 位整数(long long),每个元素储存 12 个十进制位;对 xk (x = 1/5, 1/239) 的头部和尾部的 0 的数量进行估计,只对非 0 的部分进行计算。
pi.cpp C++ 源程序,在 Linux 下以 g++ pi.cpp -o pi -O2 编译
pi.s 在 g++ 生成的汇编程序的基础上进行修改,速度更快,在 Linux 下以 g++ pi.s -o pi 编译
另外,还有许多跟 (1) 类似的式子,但不常用。例如:
PI/4 = arctan(1/2) + arctan(1/3)
PI/4 = 8 arctan(1/10) - arctan(1/239) - 4 arctan(1/515)
第二类算法:与 1/PI 有关的级数
1/PI = (sqrt(8) / 9801) sumk=0~inf { [(4k)! (1103 + 26390k)] / [(k!)4 3964k] } (Ramanujan)
1/PI = (sqrt(10005) / 4270934400) sumk=0~inf { [(6k)! (13591409 + 545140134k)] / [(k!)3 (3k)! (-640320)3k] } (Chudnovsky)
以上两个级数(还有其它类似形式的级数,但不常用)比起 arctan 的泰勒级数要复杂得多。虽然仍然是线性收敛,总的时间复杂度也仍然是 O(n2),但它们的收敛速度相当快, (Ramanujan) 每项可以增加 8 位有效数字, (Chudnovsky) 每项可以增加 14 位。
在这个算法中,除了要进行超高精度实数(数组形式)和小整数的运算外,还有一次超高精度实数的开方和倒数的运算,这需要用到 FFT(快速傅立叶变换),在下文叙述。
第三类算法:算术几何平均值和迭代法
算术几何平均值(Arithmetic-Geometric Mean, AGM) M(a, b) 定义如下:
a0 = a, b0 = b
ak = (ak-1 + bk-1) / 2, bk = sqrt(ak-1 bk-1)
M(a, b) = limk->inf ak = limk->inf bk
然后,由椭圆积分的一系列理论(抱歉,过程我不懂)可以推导出如下公式:
a0 = 1, b0 = 1 / sqrt(2)
1/PI = { 1 - sumk=0~inf [2k (ak2 - bk2)] } / 2M(a0, b0)2 (AGM)
根据这条公式可以制定适当的迭代算法。在迭代过程中,有效位数随迭代次数按 2 的指数增加,即每迭代一次有效位数乘 2。算法中的超高精度实数的乘、除、开方等运算需要使用 FFT,在下文叙述。综合考虑 FFT 的时间复杂度,整个算法的时间复杂度约为 O(n log(n)2)。
除了 (AGM) 以外,还有其它的迭代序列,它们具有同样的时间复杂度。例如下面的这个序列将按 4 的指数收敛到 1/PI:
y0 = sqrt(2) - 1, a0 = 6 - 4 sqrt(2)
yk = [1 - sqrt(sqrt(1 - yk-14))] / [1 + sqrt(sqrt(1 - yk-14))], ak = (1 + yk)4 ak-1 - 22k+1 yk (1 + yk + yk2)
1/PI = limk->inf ak (Borwein)
FFT
如上所述,第二和第三类算法不可避免地要涉及超高精度实数(数组形式存取的多位数)的乘、除、开方等运算。多位数乘法如果按照常规方法来计算,逐位相乘然后相加,其时间复杂度将达到 O(n2)。使用 FFT 可大大减少计算量。
设有复数数组 a[k] 和 b[k] (k=0~n-1),正向和反向的离散傅立叶变换(DFT)定义如下: (i = sqrt(-1))
b = FFTforward(a) : b[k] = sumj=0~n-1 ( a[j] e-i*j*2PI*k/n ) (3)
b = FFTbackward(a) : b[k] = (1/n) sumj=0~n-1 ( a[j] ei*j*2PI*k/n ) (4)
(3) 和 (4) 中的 (1/n) 可以放在任何一个式子中,也可以拆成 (1/sqrt(n)) 同时放在两个式子中,目的是保证正向和反向傅立叶变换以后不会相差一个因子。
当 n 的所有素因子均为小整数,尤其是当 n 为 2 的整数次幂的时候,使用适当的算法经过仔细的协调,可以避免多余的计算,使离散傅立叶变换 (3) 和 (4) 减少至 O(n log(n)) 的时间复杂度,即所谓的快速傅立叶变换(FFT)。具体的细节请查阅相关书籍。下面给出我写的一段 FFT 程序,仅供参考。另外也有已经开发的 FFT 函数库,例如 FFTW ,可以直接使用。
fft.cpp FFT 的 C++ 源程序
利用 FFT,要计算 n1 位和 n2 位的两个多位数乘法,可以这样进行:开辟两个长度为 n(n>=n1+n2,取 2m 最佳) 的复数数组,将两个多位数从低位到高位分别填入,高位补 0。对两个数组分别进行正向傅立叶变换。将得到的两个变换后的数组的对应项相乘,然后进行反向傅立叶变换,最后得到一个结果数组。由于傅立叶变换是在复数域中进行的,因此还要对结果数组进行取整和进位,才能得到最终的乘积。
值得留意的是傅立叶变换的精度问题。我们知道,在计算机中实数用单精度数或双精度数表示,它们会存在一定的误差。在计算多位数乘法时,n 往往是一个很大的数字,傅立叶变换过程中需要对数组的每一项进行求和,如何保证精度带来的误差不会因为求和而超出允许的范围?我的观点是必须使用双精度实数,而且由于统计特性,精度带来的误差在求和过程中不会很大,一般不会影响计算的正确性。如果需要保证计算的正确性,我想到两种检查方法。第一种是取模验算。例如,如果乘数和被乘数对 17 的模分别是 8 和 6,那么积对 17 的模就应该是 14。第二种是检查运算结果中浮点数偏离整数的最大值。如果偏差只有比如 10-3 量级,我们可以认为这个尺度的乘法运算很安全;如果偏差达到 0.5,说明运算已经出错了;如果偏差达到 0.1 量级,那也比较危险,也许换个别的乘数和被乘数就溢出了。
多位数的倒数和开方可以通过牛顿迭代求根法转化为乘法运算。例如,要计算 x = 1/a ,根据牛顿迭代法令 f(x) = 1/x - a ,可以得到以下迭代序列:
x0 ~= 1/a
xk = xk-1 - f(xk-1)/f'(xk-1) = 2xk-1 - axk-12 (5)
要计算 x = sqrt(a) ,可以先计算 x = 1 / sqrt(a) ,令 f(x) = 1/x2 - a ,可以得到以下迭代序列:
x0 ~= 1 / sqrt(a)
xk = xk-1 - f(xk-1)/f'(xk-1) = (3/2)xk-1 - (1/2)axk-13 (6)
(5) 和 (6) 均以 2 的指数收敛到所求结果。还存在其它更复杂一些的迭代序列,它们以更高的指数收敛,在此不提。不过需要提醒的是,跟 (AGM) 不同,这里 (5) 和 (6) 中的 x0 只是 1/a 和 1 / sqrt(a) 的约值,在前几次的迭代中不必进行满 n 位数的乘法运算,因而可以减少计算量。

php 求角度函数
abs --- 取绝对值
acos --- 取反余弦值
asin --- 取反正弦值
atan --- 取反正切值
atan2 --- 取二个变量的反正切值
base_convert --- 转换数值的进位方式
bindec --- 二进制转十进制
ceil --- 取得大于指定数的最小整数值
cos --- 取余弦值
decbin --- 十进制转二进制
dechex --- 十进制转十六进制
decoct --- 十进制转八进制
deg2rad --- 将数值从度数转成径度
exp --- 取得自然对数的次方值
floor --- 取得小于指定数的最大整数值
getrandmax --- 取得最大乱数值
hexdec --- 十六进制转十进制
log --- 自然对数
log10 --- 底为10的对数
max --- 传回参数中最大值
min --- 传回参数中最小值
mt_rand --- 取得乱数值
mt_srand --- 设定乱数种子
mt_getrandmax --- 取得乱数最大值
number_format --- 将数字字符串格式化
octdec --- 八进制转十进制
pi --- 取得圆周率pi的值
pow --- 传回次方项的值
rad2deg --- 转换径度值为度数
rand --- 产生乱数值
round --- 取四拾五入
sin --- 取正弦值
sqrt --- 取平方根值
srand --- 设定乱数种子
tan --- 取正切值
从表单上输入圆柱的半径和高,然后PHP中求体积
我爱编程网(https://www.52biancheng.com)小编还为大家带来从表单上输入圆柱的半径和高,然后PHP中求体积的相关内容。
根据圆柱的半径和高求体积的公式为:
$V = \pi r^2 h$
我爱编程网
其中,$V$表示圆柱体积,$\pi$为圆周率,$r$为圆柱底面半径,$h$为圆柱高。
以下是根据圆柱的半径和高求体积的PHP代码示例:
function getCylinderVolume($radius, $height) {
$pi = 3.14159;
$volume = $pi * pow($radius, 2) * $height;
return $volume;
}
// 测试
echo getCylinderVolume(2.5, 10); // 输出 196.34975
在代码中,使用了pow()函数计算半径的平方。最后通过return语句返回圆柱的体积值。函数可以被多次调用,用于计算不同半径和高的圆柱体积。
以上就是我爱编程网为大家带来的请推导一个圆周率兀的计算公式,谢啦!(php 求角度函数),希望能帮助到大家!更多相关文章关注我爱编程网:
www.52biancheng.com免责声明:文章内容来自网络,如有侵权请及时联系删除。